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The conventional group additivity (GA) formalism may be identically reduced to a stoichiometric and
thermochemical analysis of a special class of reactions referred to as GA reactions, that is, reactions that
preserve the type and number of groups. Within this approach, the performance (error) of a GA scheme is
determined by the stoichiometry and enthalpy changes of the GA reactions. That is, the lower the enthalpy
changes of the GA reactions, the better the performance of a GA scheme. Ideally, an exact GA scheme
would imply any conceivable GA reaction to be precisely thermoneutral, that is, have a zero enthalpy change.
A somewhat surprising result is that, additionally, the performance of GA methods is influenced by a purely
stoichiometric factor of GA reactions. These findings do not improve the performance of a given GA scheme.
Rather, it is an interpretation that leads to a deeper understanding of the performance of a GA scheme and
may be used in designing more accurate GA schemes.

1. Introduction

Group additivity (GA) methods have been used successfully
for more than half a century to estimate thermochemical data
for species for which experimental data are unavailable.1-5

Although ab initio methods are becoming increasingly available,
the GA methods are still competitive.6-15 However, there is one
aspect of the GA methods that, in our opinion, was overlooked
and is causing some confusion. The point is that in many cases
the groups happen to be linearly dependent. In such cases, one
has to assign arbitrary group values for linearly dependent
groups. The numerical arbitrariness of the group values does
not cause any mathematical problems. Rather, it diminishes the
interpretation capability of GA methods. Thus, recently, Gronert6

proposed a new group additivity scheme for alkanes, alkenes,
and alkyl radicals and used it to rationalize several fine
interactions in organic species such as hyperconjugation and
the branching effect. Although the model performance for
enthalpies of formation is excellent, Wodrich and Schleyer7

pointed out thatno significance can be attached to the group
Values obtained from empirical fitting schemes. Moreover, they
showed that when applied to a subset of the species in the
Gronert data set, arbitrarily fixing some of the group values, or
even removing some of them, results inmathematically
equiValent models. These results were obtained based on a
detailed analysis of various models. A more careful analysis of
Gronert’s GA scheme reveals, however, that the groups are
linearly dependent when applied to this subset of the data and
the mathematical equivalence of various models is not surprising
at all.

On the basis of the above, it is of interest to consider the
significance of the numerical arbitrariness of the group values
in GA methods. More specifically, we present a general proof
of the independence of the performance of GA methods on the
group values as well as an interpretation of this phenomenon.
Our approach is based on the analogy between the GA and
chemical reaction stoichiometry that has been pointed out by
us recently.16-18 This new interpretation not only proves the

independence of the GA methods on the group values and,
hence, the physicochemical meaningless of the group values
but also provides important insight into the performance of GA
methods in general.

2. Theory

Recently, it has been shown that the ordinary least-squares
(OLS) method may be modified so as to minimize the residuals
(errors) subject to a set of explicit linear relations among
residuals.16 This result reveals an interesting analogy with
chemical reaction stoichiometry as well as a new interpretation
of the OLS. In particular, the residuals may be explicitly related
to various characteristics of special classes of reactions. Below,
we present a succinct summary of this approach as applied to
GA methods.

Consider a training set ofn chemical species B1, B2, ..., Bn.
Let ∆Hf,i

exp (i ) 1,2,...,n) be the experimental enthalpies of
formation and∆Hf,i

calc (i ) 1,2,...,n) the calculated (via the
group additvity) enthalpies of formation of the species. It is,
thus, convenient to introduce the vectors:

Let furthere be the error (residual) vector

Next, instead of introducing the group value increments and
looking for their best fitting we define the so-called GA
reactions,17,18 that is, reactions that conserve the number and
type of groups. These reactions are generated based on the group
matrix. Mathematical details of the generation of GA reactions
may be found in the Appendix as well as in refs 17 and 18. If* E-mail: ifishtik@wpi.edu.
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the rank of the group matrix is equal toq, then the number of
linearly independent GA reactions is equal tom ) n - q. Let
an arbitrary set ofm linearly independent GA reactions be

where

andν is the stoichiometric matrix. Let further∆HF be the vector
of the enthalpy changes of the GA reactionsG:

These may be calculated from the experimental enthalpies of
formation via19

The GA reactions have an important property, namely, their
calculated enthalpy changes are equal to zero,18 that is

Subtracting eq 10 from eq 8 and taking into account eq 4 we
obtain

Now, the error vectore may be evaluated by minimizing the
producteTe subject to the constraint given by eq 11. The result
is17

As can be seen, the error vector may be obtained without group
increment values!

Within this approach, the enthalpy of formation of a new
species, for example, Bn+1, is also evaluated based on stoichio-
metric considerations. The procedure is as follows. From the
error vector, the calculated enthalpies of formation of the training
set of species may be evaluated

Let an arbitrary GA reaction involving species B1, B2, ..., Bn,
Bn+1 be

Because the enthalpy change of a GA reaction expressed via
the calculated enthalpies of formation should be equal to zero,
that is

we have

This result is independent of the choice of the GA reaction.

3. An Example: Gronert’s Scheme6

For illustration purposes, we consider only the training subset
of n ) 14 species discussed by Gronert.6 These species are given
in Table 1. Gronert’s scheme involves seven types of groups,
namely, the number of carbon and hydrogen atoms, C-C, and
C-H bonds as well as three molecular fragments (interactions),
HCH, CCH, and CCC. The respective group matrix is given in
Table 2. Its rank is equal toq ) 5 and, hence, only five out of
seven groups are linearly independent. It means that for this
data any two groups may be assigned an arbitrary value or,
alternatively, could be dropped without affecting the model
performance. However, two points should be noted with respect
to the Gronert model. First, the full set of species in the Gronert
paper6 gives a group matrix with a rank ofq ) 6. Second,
Gronert eliminated two of the group values from the analysis
by assigning them values equal to the heats of formation of
gaseous carbon (170.6 kcal/mol) and hydrogen atoms (52.1 kcal/
mol) while introducing a new parameter EC viewed as a
correction term for electron pairing in atomic carbon. Thus,
overall Gronert’s model is in fact a six-parameter model.

According to the GA reaction approach, the first step in the
evaluation of the GA error is the generation of a set of linearly
independent GA reactions. This set involvingm ) n - q ) 14
- 5 ) 9 linearly independent GA reactions is 14- 5 ) 9. We
select these as (see the Appendix for the mathematical details)

The stoichiometric matrix and the enthalpy change vector of

G : νB ) 0 (5)

G ) (F1,F2,...,Fm)T (6)

ν ) (ν11 ν12 ... ν1n

ν21 ν22 ... ν2n

... ... ... ...
νm1 νm2 ... νmn

) (7)

∆HF ) (∆H1, ∆H2,...,∆Hm)T (8)

∆HF ) ν ∆H f
exp (9)

ν∆Hf
calc ) 0 (10)

νe ) ∆HF (11)

e ) νT(ννT)-1∆HF (12)

∆Hf
calc ) ∆Hf

exp - e (15)

∑
i)1

b

νiBi + νi+1Bi+1 ) 0 (16)

∑
i)1

n

νi ∆Hf,i
calc + νi+1∆Hf,i+1

calc ) 0 (17)

∆Hf,i+1
calc ) -

1

νi+1
∑
i)1

n

νi ∆Hf,i
calc (18)

F1: -B2 + 2B3 - B4 ) 0 ∆H1 ) 0.4 kcal/mol

F2: -B1 + 3B2 - 3B3 + B5 ) 0 ∆H2) 0.8 kcal/mol

F3: -2B2 + 3B3 - B6 ) 0 ∆H3) 0.1 kcal/mol

F4: -B1 + 4B2 - 4B3 + B7 ) 0 ∆H4) 1.2 kcal/mol

F5: -3B1 + 8B2 - 6B3 + B8 ) 0 ∆H5) 3.6 kcal/mol

F6: -3B2 + 4B3 - B9 ) 0 ∆H6 ) 0 kcal/mol

F7: -6B2 + 6B3 - B10 ) 0 ∆H7 ) -0.6 kcal/mol

F8: -3B1 + 6B2 - 3B3 + B11- 3B13 + 2B14 ) 0
∆H8 ) 3.8 kcal/mol

F9: -B1 + 2B2 - B3 + B12- 2B13 + B14 ) 0
∆H9 ) 1.2 kcal/mol
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this set of linearly independent GA RERs are

Substituting these into eq 12 and performing the matrix
operations gives:

The numerical values of the errors are presented in Table 1.
These errors coincide with those obtained by Gronert6 as well
as Wodrich and Schleyer.7

Let us next illustrate the evaluation of the enthalpy of
formation of a new species, say, propyl radical (B15). In doing
this we generate an arbitrary GA reaction involving species B15,
for example

On the basis of the thermoneutrality condition for this GA
reaction

TABLE 1: Training Subset of the 14 Species Used in the
Analysis of Gronert’s Scheme6

∆Hf,i
exp

(kcal/mol)
ei

(kcal/mol) ∆Hf,i
calc

methane B1 -17.9 -0.604 -17.296
ethane B2 -20.0 0.441 -20.441
propane B3 -25.0 0.319 -25.319
n-butane B4 -30.4 -0.203 -30.197
iso-butane B5 -32.1 -0.169 -31.931
n-pentane B6 -35.1 -0.024 -35.076
iso-pentane B7 -36.7 0.109 -36.809
neo-pentane B8 -40.1 0.177 -40.277
n-hexane B9 -40.0 -0.046 -39.954
cyclohexane B10 -29.4 -0.130 -29.270
methyl radical B11 35.0 0.077 34.923
ethyl radical B12 29.0 -0.097 29.097
isopropyl radical B13 21.5 -0.039 21.539
tert-butyl radical B14 12.3 0.056 12.244

propyl radical B15 23.9 -0.3 24.2

TABLE 2: Group Matrix for Gronert’s Scheme 6

C H CC CH HCH CCH CCC

B1 1 4 0 4 6 0 0
B2 2 6 1 6 6 6 0
B3 3 8 2 8 7 10 1
B4 4 10 3 10 8 14 2
B5 4 10 3 10 9 12 3
B6 5 12 4 12 9 18 3
B7 5 12 4 12 10 16 4
B8 5 12 4 12 12 12 6
B9 6 14 5 14 10 22 4
B10 6 12 6 12 6 24 6
B11 1 3 0 3 3 0 0
B12 2 5 1 5 4 5 0
B13 3 7 2 7 6 8 1
B14 4 9 3 9 9 9 3

B15 3 7 2 7 5 9 1

ν ) (
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14

0 -1 2 -1 0 0 0 0 0 0 0 0 0 0
-1 3 -3 0 1 0 0 0 0 0 0 0 0 0

0 -2 3 0 0 -1 0 0 0 0 0 0 0 0
-1 4 -4 0 0 0 1 0 0 0 0 0 0 0
-3 8 -6 0 0 0 0 1 0 0 0 0 0 0

0 -3 4 0 0 0 0 0-1 0 0 0 0 0
0 -6 6 0 0 0 0 0 0-1 0 0 0 0

-3 6 -3 0 0 0 0 0 0 0 1 0-3 2
-1 2 -1 0 0 0 0 0 0 0 0 1-2 1

)
F1

F2

F3

F4

F5

F6

F7

F8

F9

∆H ) (∆H1,∆H2,...,∆H9)
T

e1 ) 1
4583

(340∆H1 - 554∆H2 + 101∆H3 - 315∆H4 -

743∆H5 - 138∆H6 - 1434∆H7 - 107∆H8 + 107∆H9)

e2 ) 1
9166

(1404∆H1 - 778∆H2 + 1118∆H3 - 492∆H4 +

760∆H5 + 832∆H6 - 1716∆H7 + 313∆H8 - 313∆H9)

e3 ) 1
4583

(721∆H1 - 393∆H2 + 659∆H3 - 331∆H4 +

325∆H5 + 597∆H6 - 372∆H7 + 164∆H8 - 164∆H9)

e4 ) 1
9166

(-7686∆H1 - 794∆H2 + 1518∆H3 -

832∆H4 + 540∆H5 + 1556∆H6 + 228∆H7 + 343∆H8 -
343∆H9)

e5 ) 1
9166

(794∆H1 + 8034∆H2 + 802∆H3 - 1140∆H4 -

1816∆H5 + 810∆H6 + 48∆H7 - 169∆H8 + 169∆H9)

e6 ) 1
4583

(759∆H1 - 401∆H2 - 3724∆H3 - 501∆H4 +

215∆H5 + 959∆H6 + 600∆H7 + 179∆H8 - 179∆H9)

e7 ) 1
4583

(416∆H1 - 570∆H2 + 501∆H3 + 3928∆H4 -

963∆H5 + 586∆H6 + 510∆H7 - 77∆H8 + 77∆H9)

e8 ) 1
4583

(-270∆H1 - 908∆H2 - 215∆H3 - 963∆H4 +

1264∆H5 - 160∆H6 + 330∆H7 - 589∆H8 + 589∆H9)

e9 ) 1
9166

(1556∆H1 - 810∆H2 + 1918∆H3 -

1172∆H4 + 320∆H5 - 6886∆H6 + 2172∆H7 +
373∆H8 - 373∆H9)

e10 ) 1
4583

(114∆H1 - 24∆H2 + 600∆H3 - 510∆H4 -

330∆H5 + 1086∆H6 - 1667∆H7 + 45∆H8 - 45∆H9)

e11 ) 1
45830

(-1715∆H1 - 845∆H2 - 1790∆H3 -

770∆H4 - 5890∆H5 - 1865∆H6 - 450∆H7 +
12469∆H8 - 17052∆H9)

e12 ) 1
45830

(1715∆H1 + 845∆H2 + 1790∆H3 +

770∆H4 + 5890∆H5 + 1865∆H6 + 450∆H7 -
17052∆H8 + 30801∆H9)

e13 ) 1
45830

(1715∆H1 + 845∆H2 + 1790∆H3 +

770∆H4 + 5890∆H5 + 1865∆H6 + 450∆H7 -
3303∆H8 - 10446∆H9)

e14 ) 1
45830

(-1715∆H1 - 845∆H2 - 1790∆H3 -

770∆H4 - 5890∆H5 - 1865∆H6 - 450∆H7 +
7886∆H8 - 3303∆H9)

B1 + 2B3 + 2B13 ) 3B2 + B14 + B15

13266 J. Phys. Chem. A, Vol. 110, No. 49, 2006 Fishtik



we obtain

It may be easily checked that the same value is obtained starting
from any other GA reaction. For instance

This value coincides with the value predicted by the conven-
tional analysis.

4. Interpretation

Equation 12 has been obtained based on an arbitrary selection
of a set of linearly independent GA reactions. At first glance it
might look like the error vector is also arbitrary. Equation 12,
however, has a remarkable property according to which the error
vector may be partitioned into a sum of contributions associated
with a complete set of stoichiometrically unique GA response
reactions (RERs). Let the set of stoichiometrically distinct GA
RERs beFj (j ) 1, 2, ...,N). Then, based on our results reported
previously,17 the group additivity errors of the species may be
presented as

whereγj
2 is the stoichiometric factor of the GA RERFj, νji is

the stoichiometric coefficient of species Bi in Fj, and∆Hj is the
enthalpy change ofFj. Keep in mind that eq 12 is given in terms
of m linearly independent GA reactions. Because thesem GA
reactions are arbitrary, they may be selected from the list of
GA RERs. To make the notation consistent we assume, without
loss of generality, that them linearly independent GA reactions
in eq 12 are GA RERs and they are the firstm from a complete
list of N. Because of the stoichiometric uniqueness of the GA
RERs, the independence of the error vector on the choice of
linearly independent GA RERs is self-evident.

The advantage of eq 13 is that the performance of GA
schemes may be rationalized in terms of stoichiometry and
enthalpy changes of GA RERs. As can be seen, the error of the
group additivity is determined by a product of three terms. Two
of them, namely,γj

2andνji, are stoichiometric in nature while
the third is a thermochemical characteristic of GA RERs, that
is, their enthalpy changes∆Hj. Although it is natural to expect
that the performance of GA methods depends on the enthalpy
changes and stoichiometric coefficients of the species, the

dependence of the GA performance on purely stoichiometric
factors of GA RERs is not obvious. The stoichiometric factors
of GA RER are complex functions of the system’s structure
expressed by the group matrix. Mainly, the appearance of the
stoichiometric factors, that is, values different from one, is due
to the fact that some of the species involved in GA RERs happen
to have stoichiometric coefficients equal to zero. As a result,
several GA RERs become stoichiometrically identical and,
consequently, may be considered as a single GA RER.
Furthermore, the RERs formalism, eq 13, requires adding the
stoichiometric factors of stoichiometrically identical RERs as
γj

2. Details of the evaluation of the stoichiometric factors of
RERs are given in the Appendix.

On the basis of this interpretation, we conclude that the group
additivity error isan expression of the system’s stoichiometry
and of the extent to which the GA RERs differ from thermo-
neutrality.

The partition of the errors into a unique sum of contributions
associated with GA RERs, eq 13, provides valuable insider
information concerning the performance of GA methods. Indeed,
with a complete list of GA RERs and their stoichiometric factors
and enthalpy changes, one can easily determine the GA RERs
that are responsible for a poor performance of a given GA
scheme. In particular, the partition of the errors into contributions
associated with GA RERs is a convenient way to look for
outliers.16

A complete list of GA RERs for Gronert’s GA scheme
includes 389 stoichiometrically distinct GA RERs (see the
Supporting Information). A quick look at this list immediately
reveals several interesting particularities of the Gronert’s GA
scheme performance. The most surprising of them is the effect
of the stoichiometric factor. Thus, the stoichiometric factors of
some GA RERs may reach substantial values and, in fact, may
dominate the errors of the species. Let us illustrate this statement
with the help of an example. Consider the following GA RER

For this GA RER, we have∆H151 ) 16.0 kcal/mol,γ151
2 ) 1

and, hence, according to eq 13, its contribution to B1 (methane)
error is (-12)(1)(16.0)/∆ ) -192.0/∆ kcal/mol. Now, consider
the GA RER

Although the enthalpy change for this GA RER is much smaller,
∆H11 ) 1.0 kcal/mol, the value of the stoichiometric factor is
huge,γ11

2 ) 1800. As a result, its contribution to B1 (methane)
error is substantially higher, that is, (-2)(1800)(1.0)/∆ )
-3600.0/∆.

5. Discussion and Concluding Remarks

Conventionally, the group additivity methods are based on
the evaluation of the group values. These are normally
determined by a best fitting of the experimental enthalpies of
formation of a training set of species for which accurate
thermochemical data are available. Mathematically, this pro-
cedure is rigorous. Some problems appear when the groups are
linearly dependent. In this case, one can either assign arbitrary
group values to linearly dependent groups or, alternatively,
remove the linearly dependent groups from the analysis. Clearly,
because the selection of the linearly independent groups is
arbitrary, the group values lack any physicochemical meaning.
Respectively, these group values can not be used to rationalize
various physicochemical interactions in molecules.

-∆Hf,1
calc - 2∆Hf,3

calc - 2∆Hf,13
calc + 3∆Hf,2

calc + ∆Hf,14
calc +

∆Hf,15
calc ) 0

∆Hf,15
calc ) ∆Hf,1

calc - 3∆Hf,2
calc + 2∆Hf,3

calc + 2∆Hf,13
calc - ∆Hf,14

calc)
24.2 kcal/mol

B1 + 2B13 + B15 ) B2 + 2B12 + B14

∆Hf,15
calc ) -∆Hf,1

calc + ∆Hf,2
calc + 2∆Hf,12

calc - 2∆Hf,13
calc +

∆Hf,14
calc) 24.2 kcal/mol

3B1 + 3B15 ) 3B2 + 2B11 + B14

∆Hf,15
calc ) 1

3
(-3∆Hf,1

calc + 3∆Hf,2
calc + 2∆Hf,11

calc + ∆Hf,14
calc) )

24.2 kcal/mol

ei )
1

∆
∑
j)1

N

γj
2νji ∆Hj; i ) 1, 2, ...,n (13)

∆ )
1

m
∑
j)1

N

γj
2(∑

i)1

n

νji
2) (14)

F151: -12B1 + 15B2 - 3B9 + 8B11 - 12B12 + 4B14 ) 0

F11: -2B1 + 2B5 - B10 ) 0
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The approach presented in this work relates the performance
of group additivity methods to the stoichiometry and thermo-
chemistry of GA reactions. These reactions are required to
preserve the number and type of groups and are expected to
have small enthalpy changes, that is, be close to thermoneutral.
Thus, a good performing additivity method should result in GA
reactions whose enthalpy changes are small, or are close to
thermoneutral. The more the GA reactions differ from thermo-
neutrality, the worse the performance of the GA methods. It is
the difference from zero of the enthalpy changes of the GA
reactions that points at unbalanced interactions in the molecules,
respectively, at a bad choice of groups. Furthermore, this
stoichiometric approach allows a partition of the error of the
group additivity methods into a sum of contributions associated
with a special class of stoichiometrically unique reactions,
namely, GA RERs. An analysis of a complete set of GA RERs
along with their stoichiometric and thermochemical character-
istics provides valuable insight into the performance of the group
additivity methods.

Appendix
Generation of GA RERs for Gronert’s Scheme.6 Our

starting point is the group matrix, Table 2. After several
elementary matrix operations, the group matrix may be presented
as

It is seen that the rank of the group matrix is equal to five. In
other words, only five out of seven groups are linearly
independent. Consider now a 14× 6 matrix formed from the
first 5 columns and the species column:

According to the response reactions (RERs) formalism,eVery
determinant of order six formed from this matrix defines a GA
RER. Hence, the total number of GA RERs should not exceed
the number of ways six rows may be selected from a total of
fourteen, that is, 14!/6!/8!) 3003. In reality, because of a large
number of “zero” GA RERs (the determinant is equal to zero,

i.e., all stoichiometric coefficients are equal to zero) as well as
repetitions, the number of stoichiometrically distinct GA RERs
is smaller. For instance, the determinant formed from the first
six rows is obviously equal to zero

This means that the GA RER involving the first six species is,
in fact, a “zero” GA RER

The explanation is that in this system there are other, “shorter”
GA RERs involving the same species, for example

A GA RER involving all of the six species would, therefore,
violate the stoichiometric uniqueness of GA RERs. In cases
when the number of different from zero stoichiometric coef-
ficients in a GA RER is less than six, we face a situation when
several GA RERs are actually stoichiometrically equivalent. For
example, the following determinants

result in essentially the same GA RERs because the stoichio-
metric coefficients of B1 and B2 are equal to zero.

All together, there are seven such reactions

B1 1 1 0 0 0 0 0
B2 0 1 0 0 0 0 0
B3 0 1 1 0 0 0 0
B4 0 1 2 0 0 0 0
B5 1 1 3 0 0 0 0
B6 0 1 3 0 0 0 0
B7 1 1 4 0 0 0 0
B8 3 1 6 0 0 0 0
B9 0 1 4 0 0 0 0
B10 0 0 6 0 0 0 0
B11 0 0 0 1 0 0 0
B12 0 0 0 1 1 0 0
B13 1 0 1 1 2 0 0
B14 3 0 3 1 3 0 0

(1 1 0 0 0 B1
0 1 0 0 0 B2
0 1 1 0 0 B3
0 1 2 0 0 B4
1 1 3 0 0 B5
0 1 3 0 0 B6
1 1 4 0 0 B7
3 1 6 0 0 B8
0 1 4 0 0 B9
0 0 6 0 0 B10
0 0 0 1 0 B11
0 0 0 1 1 B12
1 0 1 1 2 B13
3 0 3 1 3 B14

)

| 1 1 0 0 0 B1

0 1 0 0 0 B2

0 1 1 0 0 B3

0 1 2 0 0 B4

1 1 3 0 0 B5

0 1 3 0 0 B6

| ) 0

0B1 + 0B2 + 0B3 + 0B4 + 0B5 + 0B6 ) 0

-B2 + 2B3 - B4 ) 0

-B1 + 3B2 - 3B3 + B5 ) 0

-2B2 + 3B3 - B6 ) 0

| 1 1 0 0 0 B1
0 1 3 0 0 B6
1 1 4 0 0 B7
0 0 0 1 0 B11
0 0 0 1 1 B12
1 0 1 1 2 B13

| ) 0B1 + 4B6 - 4B7 + 4B11 - 8B12 +

4B13 ) 0| 0 1 0 0 0 B2
0 1 3 0 0 B6
1 1 4 0 0 B7
0 0 0 1 0 B11
0 0 0 1 1 B12
1 0 1 1 2 B13

| ) 0B2 + 3B6 - 3B7 + 3B11 - 6B12 +

3B13 ) 0

4B6 - 4B7 + 4B11 - 8B12 + 4B13 ) 0

3B6 - 3B7 + 3B11 - 6B12 + 3B13 ) 0

4B6 - 4B7 + 4B11 - 8B12 + 4B13 ) 0

3B6 - 3B7 + 3B11 - 6B12 + 3B13 ) 0

2B6 - 2B7 + 2B11 - 4B12 + 2B13 ) 0
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It is convenient to replace these GA RERs by a single one in
order to simplify the analysis. In doing this, we accept the
convention according to which the stoichiometric coefficients
in the GA RERs are selected as the smallest integers and
introduce a stoichiometric factorγ for every GA RER

Now, these GA RERs may be substituted with a single GA
RER by introducing an overall stoichiometric factor. Because
in eq 13 the stoichiometric factors are squared, the overall
stoichiometric factor of a GA RER is equal to the squared sum
of stoichiometric factors of stoichiometrically equivalent GA
RERs. For instance, the overall stoichiometric coefficient of the
above GA RER is equal toγ2 ) 42 + 32 + 22 + 12 +12 +
(-1)2 + (-6)2 ) 68. A complete list of stoichiometrically
distinct GA RERs along with their stoichiometric factors and
enthalpy changes is given in the Supporting Information.

Supporting Information Available: A complete list of
stoichiometrically distinct GA RERs along with their stoichio-
metric factors and enthalpy changes. This material is available
free of charge via the Internet at http://pubs.acs.org.
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B6 - B7 + B11- 2B12 + B13 ) 0

B6 - B7 + B11- 2B12 + B13 ) 0

-B6 + B7 - B11 + 2B12 - B13 ) 0

-6B6 + 6B7 - 6B11 + 12B12 - 6B13 ) 0

γ
B6 - B7 + B11 - 2B12 + B13 ) 0 4
B6 - B7 + B11 - 2B12 + B13 ) 0 3
B6 - B7 + B11 - 2B12 + B13 ) 0 2
B6 - B7 + B11 - 2B12 + B13 ) 0 1
B6 - B7 + B11 - 2B12 + B13 ) 0 1
B6 - B7 + B11 - 2B12 + B13 ) 0 - 1
B6 - B7 + B11 - 2B12 + B13 ) 0 - 6
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